
Trajectory planning and control for grasping
tumbling targets in zero gravity

Juan Salazar
Dept. of Electrical Engineering and Computer Science

MIT
Cambridge, United States

salazarj@mit.edu

Abstract—In the wake of advancing space exploration tech-
nologies, there is a need to address the problem of collecting
space debris in the form of either obsolete spacecraft or other
free-floating objects. Neglecting to do so endangers astronauts
performing tasks outside of Earth-orbiting stations and could
also jeopardize future missions to observe other bodies in the
solar system. In this report, I discuss my implementation of
a capture maneuver strategy that enables a simulated 7-DOF
robotic arm to grasp a tumbling, free-floating target with
a known state. My approach consists of using a trajectory
planner that performs piecewise interpolation on desired end-
effector poses and a differential inverse kinematics (IK) pseudo-
inverse controller that enables the end-effector to move along
the generated trajectories. I will present the system performing
successful capture maneuvers under varying target conditions
and will also benchmark the system against noise on the pose
estimate. While my framework produces successful grasps under
different conditions, the experiments that I will present here
reveal a number of potential improvements that would enhance
its robustness against noise, performance in extreme target
scenarios, and other aspects.

Index Terms—trajectory planning, grasping, differential in-
verse kinematics

I. INTRODUCTION

Space manipulation systems (SMS) are designed for and
applied in many critical activities within the area of space
exploration. Their use allows astronauts stationed at the Inter-
national Space Station (ISS) to remotely perform tasks that
would otherwise be too dangerous or impossible, enables
autonomous in-space construction and servicing, and even
enables autonomous spacecraft to stabilize tumbling objects
(such as other spacecraft or debris) [1]. In this report, I
will demonstrate a simulated space debris collection system
that uses a Kuka iiwa robotic arm to successfully grasp and
stabilize a tumbling cylindrical object with a known initial
state estimate. My system consists of 1) a differential IK
(inverse kinematics) controller that enables gripper motion
along a trajectory and 2) a trajectory planner that dictates
where and when the iiwa’s end manipulator should move
and grasp the object by performing piecewise interpolation on
desired gripper poses. In my implementation, the robot will
be effectively welded to a ground plane, which means that I
will specifically be approximating an SMS that is attached to
a far larger free-floating body (such as the Canadarm currently
servicing the ISS) that is practically unaffected by the arm’s

reaction forces. Finally, I will test the system’s performance
when the object’s measured state is subject to noise in order
to evaluate this system’s compatibility to real-world scenarios.

A. Related Work

In application, SMSes are currently most prevalent on the
ISS and are primarily used to assist (or even replace) astro-
nauts with space hardware handling, inspection, and transport.
Nevertheless, there is a wealth of ongoing study into equipping
spacecraft with SMSes in order to perform capture maneuvers
on other spacecraft or debris. One work attempts to solve the
problem of generating free-floating manipulator trajectories
that intercept the target while leaving the attitude of the
manipulator’s base unaffected, which is a case that I explicitly
mentioned will not be addressed here but still serves as
an initial source of inspiration for my trajectory generation
algorithm [2]. Because my implementation is limited to a
fixed-based manipulator, I also see this strategy as a potential
route to further matching it to real-world applications.

More closely related to this project is the work done by
Hirouki Nagamatsu et al, in which the the capture strategy
and control method for a tumbling satellite are highlighted
[3]. While their approach also considered a free-floating base,
it served as a great source of inspiration and intuition for the
design and improvement of my own strategy.

Although the two works mentioned so far (and several
others I encountered in a literature review) consider the free-
floating base case, I opted to neglect this case in order to
focus on my direct application of the course material. For
the purpose of implementing a differential IK controller and
a trajectory planner for grasping a free-floating object, I saw
that fixing the robot base would still lead to a successful out-
come that could still be extended to handle more challenging
scenarios.

II. APPROACH TO PERFORMING A GRASP MANEUVER

In this section I describe the simulation environment and
steps involved in my target capture strategy implementation,
which includes the differential IK controller, the trajectory
planner, the different target cases I considered, and an incom-
plete optimization-based IK formulation that could improve
the system’s performance by considering the limitations of
the iiwa7 arm. Note that Fig. 1 serves as a reference diagram



Fig. 1. Overview diagram of the system, including the trajectory planner,
differential IK controller, and the iiwa robot arm plant.

Fig. 2. Screenshot capture of the test environment. The target is the free-
floating cylinder in red, Kuka iiwa7 at the center of the grid.

that illustrates the different system components and their
interconnections.

A. Test Environment

In my simulation environment, the only two entities present
are the robot arm and a uniform red cylinder, which serves
as the target. An environment scenario - which we will
later categorize as ”stationary”, ”rotating”, ”translating”, or
”tumbling” - is defined by the target’s initial pose XTinit and
spatial velocity V Tinit . A screen capture of the simulation
environment is presented in Fig. 2.

B. Differential Inverse Kinematics

The forward kinematics of manipulator with joint positions
q establishes the following relationship between the end-
effector (gripper) pose XG and q.

XG = fG
kin(q). (1)

Applying differentiation yields the following relationship
between the gripper pose and the joint positions, which can
then be expressed as a relationship between the gripper spatial
velocity V G and the joint velocities v.

dXG =
∂fG

kin(q)

∂q
dq = JG(q)dq. (2)

V G = JG(q)v. (3)

where JG(q) is known as the gripper frame Jacobian. It
follows that in order for the gripper frame to move with
a spatial velocity V G

d , we need to solve for for the joint
velocities that are upheld by (3). To do this, we take the
pseudo-inverse [JG(q)]+ to arrive the solution for the joint
velocities. This solution provides the joint velocities that
produce a gripper spatial velocity that is as close as possible
to V G

d for singular and non-singular joint configurations [4].

v = [JG(q)]+V G
d . (4)

Given access to the Jacobian, the current joint configuration
encoded in q, and the desired spatial velocity it is possible
to command the gripper to move at the requested velocity
(as closely as possible). Next, I will describe the planner and
the trajectories it generates that ultimately become velocity
commands for the pseudo-inverse controller to use an inputs.

C. Planning the Gripper Trajectory

For the problem of planning trajectories, I decided to
separate four cases for the target’s initial conditions. In the first
case, the target is stationary (zero angular and linear velocity).
In the second, the target is rotating (non-zero angular velocity,
zero linear velocity). In the third, the target is translating (zero
angular velocity, non-zero linear velocity). The fourth case is
simply a combination of the second and third cases, which
I defined for ease of reference as the ”tumbling” case. For
the sake of simplicity in the demonstrations, non-zero angular
velocities are restricted to the x and y axes in the target’s body
frame and non-zero linear velocities are restricted to the y axis
in the target’s body frame. Now, I will describe my approach
in each of the four target cases. Please note that these steps
are all handled by the trajectory planner.

1) Stationary Target: This is the simplest case, however it is
also the one that is most involved since it requires us to provide
the fundamental planning infrastructure. Most debris capture
scenarios are broken into different phases separated most no-
tably by the initial, pre-grasp, grasp, and post-grasp keyframes
[1]. To each of these keyframes we assign a desired gripper
pose, which yields the keyframe poses XGinit , XGpregrasp ,
XGgrasp , and XGpostgrasp (all expressed in the world frame).
Given a desired GgraspXT , and GgraspXGpregrasp , we can
compute each of the keyframe poses. Then, we can assign
times (since the start of the simulation) at which the gripper
is meant to be at each of these poses, which we will use for
interpolation.

In order to represent the trajectories between each of the
keyframes, I used a first-order hold piecewise polynomial
for interpolating between keyframe positions and spherical
linear interpolation for the orientations. The use of spherical
linear interpolation is particularly important in order to exploit
the power of representating rotations with quaternions, which
provide a non-degenerate mapping of all rotations in 3D [4].
Additionally, I specified a command trajectory for the gripper
to fully actuate (and grasp the target) between the occurrences
of keyframe poses XGgrasp and XGpostgrasp , since grasping
and staying in place means that XGgrasp is equivalent to
XGpostgrasp .

Finally, given the interpolated pose trajectories we can
approximate their derivatives to get the spatial velocity trajec-
tories. Using the Jacobian pseudo-inverse solution specified in
(4), we can now command the robot joint velocities for each
spatial velocity in the pose trajectory derivative to execute the
full maneuver.



Fig. 3. Screenshot capture of a ”proper” grasp.

2) Rotating Target: Given the infrastructure needed to
performing capture on a stationary target, adapting it for a
rotating target is not a monumental task. Recall that the target
is now rotating about a fixed axis, but not translating. This
means that at the keyframe ”pregrasp”, the gripper needs to
rotate to intercept the target’s at the correct orientation. To
achieve this, I modified the planner to substitute the original
spatial velocity commands from the stationary target trajectory
with a new set of commands that keep the original position
trajectory (to enable the linear approach to the target from the
”pregrasp” pose) but feed forward a constant gripper angular
velocity command needed to intercept the target. In particular I
computed wintercept, the angular velocity (about the gripper’s
body y-axis) that allows the gripper close its fingers on the
rotating cylinder in a proper orientation at the time of the
”postgrasp” keyframe.

wintercept =
θ0 + wT∆tapproach

∆tapproach
(5)

where wT is the target angular velocity in the target body
frame, θ0 and ∆tapproach are defined as follows:

θ0 = wT tpregrasp (6)

∆tapproach = tgrasp − tpregrasp (7)

With this formulation, the gripper frame is able to intercept
the target’s frame in the sense of orientation in order to achieve
a ”proper” (antipodal) grasp, which is illustrated in Fig. 3. In
order to neglect the time it takes for the gripper to close its
fingers, I command it to fully close fairly quickly (within half
a second). This is important for avoiding grasping the target
at an ”improper” grasp.

3) Translating Target: Once again given the fundamen-
tal planner and the target’s initial conditions, handling this
case simply required predicting the target’s future position
pintercept after a predefined mount of time, tintercept.

pintercept = pT,init + vT,inittintercept (8)

Fig. 4. Target trajectory plots from the tumbling scenario. Initial target angular
velocity is 0.1 rad/s and initial linear velocity is 0.05 m/s. For ease of reading,
please observe the plots submitted as separate PNGs with the report..

Fig. 5. Target trajectory plots from the tumbling scenario. Initial target angular
velocity is 0.2 rad/s and initial linear velocity is 0.1 m/s. For ease of reading,
please observe the plots submitted as separate PNGs with the report..

Given the future target pose XT
intercept (its orientation

remains the same), the planner treats this pose as the target’s
new ”stationary pose” as if the target had simply spawned at
that pose and remained there. Due to the fact that target is
actually still moving at the time of the gripper’s approach,
I also included an intentional delay that slows the approach
enough to prevent the fingers colliding with the target before
they surround it.

4) Tumbling Target: Now that the stationary, rotating, and
translating cases are handled, executing a grasp maneuver on
a tumbling target is a matter of combining the modifications
in each case into a single planner. We will look at the results
from this case later in this report.

III. RESULTS

All simulation, planning, and control routines were written
using Drake’s Python toolbox. Below I will demonstrate the
results from running the system on the ”tumbling” case and
on the same case with noise added to the initial target pose
estimate as well to the initial target angular velocity estimate.
In all of these scenarios, the predefined intercept time tintercept
was set to 10 seconds. In addition, video links for each of the
scenarios summarized below are provided at the end of this
section.

A. Tumbling Target

The tumbling scenario was tested under various initial target
angular and linear velocities. In this section, I present two
successful capture maneuvers performed on a tumbling target.



Fig. 6. Target trajectory plots from a successful capture with noisy target pose
estimate. Actual initial target angular velocity is 0.05 rad/s and initial linear
velocity is 0.05 m/s. For ease of reading, please observe the plots submitted
as separate PNGs with the report. .

In the first scenario, in which the target has an initial angular
velocity of 0.1 rad/s and a linear velocity of 0.05 m/s, the
system was able to predict the target’s position and orientation
and intercept it. The target’s angular velocity profiles shown
in Fig. 4 show that it was successfully captured and stabilized
around 10 seconds into the simulation. In the body y-axis
and body z-axis angular velocity plots there appears to be
momentary spikes and non-zero plateaus, which correspond
to the gripper rotating the captured target in its fingers for a
brief period.

Similarly, the second scenario displayed a successful capture
maneuver for a target with initial angular velocity of 0.2 rad/s
and a linear velocity of 0.1 m/s. The angular velocity profiles
in Fig. 5 also demonstrate that the target was stabilized a brief
period after 10 seconds.

B. Noisy Initial Target Pose Estimate

Given a tumbling target, I conducted experiments with
random noise on the initial target pose estimate. The noise was
sampled from a zero-mean normal distribution with standard
deviation 0.001 and was added to the actual initial target
position to generate a ’noisy’ position estimate. Fig. 6 and
Fig. 7 illustrate the target position and angular velocity profiles
for two unique noise samples, where the first experiment was
successful and the second unsuccessful. The successful capture
demonstrates a target angular velocity profile indicative of a
stabilized cylinder, with the caveat that after capture the z-
axis angular velocity was non-zero due to the target rotating
a bit even when pinched in between the gripper fingers.
The unsuccessful capture demonstrates fluctuating angular
velocities for much time after the intended capture time. In this
case, the target was grasped for a brief moment before slipping
through the fingers and being ejected at some undetermined
spatial velocity.

C. Noisy Target Angular Velocity

Given a tumbling target, I conducted experiments with ran-
dom noise on the measured target angular velocity. As in the
pose estimate experiment, the noise was sampled from a zero-
mean normal distribution with standard deviation 0.001. The
resulting target trajectory from one experiment is illustrated
in Fig. 8, in which the target is successfully grasped despite

Fig. 7. Target trajectory plots from an unsuccessful capture with noisy target
pose estimate. Actual initial target angular velocity is 0.05 rad/s and initial
linear velocity is 0.05 m/s. For ease of reading, please observe the plots
submitted as separate PNGs with the report..

Fig. 8. Target trajectory plots from the tumbling scenario with noisy target
angular velocity estimate. Actual initial target angular velocity is 0.05 rad/s
and initial linear velocity is 0.05 m/s. For ease of reading, please observe the
plots submitted as separate PNGs with the report..

the perturbation. Like in the previous trial, this experiment
was repeated several times to gauge the frequency of failure
in the maneuver. It was clear that small deviations in the
target angular velocity estimate proved to have no affect on
the success, whereas larger deviations would cause target
trajectories similar to that seen in Fig 7.

D. Videos
Below are clickable hyperlinks to videos of the results

summarized above.
1) Tumbling scenario, 0.1 rad/s and 0.05 m/s: https://youtu.

be/auAhlANvBxI
2) Tumbling scenario, 0.2 rad/s and 0.1 m/s: https://youtu.

be/hcL-fXBQbfo
3) Noisy initial target pose estimate (successful), 0.05 rad/s

and 0.05 m/s: https://youtu.be/itoxFBvtz2I
4) Noisy initial target pose estimate (unsuccessful), 0.05

rad/s and 0.05 m/s: https://youtu.be/esyGf3kmGHg
5) Noisy initial target angular velocity estimate, 0.05 rad/s

and 0.05 m/s: https://youtu.be/IQpxBokT9CE

E. Code
This is a clickable hyperlink to the GitHub repo where

the code is stored (in a Python notebook): https://github.com/
juansala/manipulation project

IV. DISCUSSION

Looking at only at the noise-free experiments, the trajectory
planner and pseudo-inverse controller were enough to allow

https://youtu.be/auAhlANvBxI
https://youtu.be/auAhlANvBxI
https://youtu.be/hcL-fXBQbfo
https://youtu.be/hcL-fXBQbfo
https://youtu.be/itoxFBvtz2I
https://youtu.be/esyGf3kmGHg
https://youtu.be/IQpxBokT9CE
https://github.com/juansala/manipulation_project
https://github.com/juansala/manipulation_project


the robot to grasp and stabilize the target under certain condi-
tions. Some of the experiments I conducted also revealed the
limitations of this approach, although they were not included in
this report. These failed experiments appeared to imply a limit
for the max target rotational velocity as well as a max target
linear velocity. I believe that these two limits are connected to
the iiwa robot’s limited maximum joint velocities and its al-
lowed work space, respectively. For instance, in some cases the
target linear velocity is high enough that the gripper capture
pose computed by the planner is far outside of the robot’s work
space, causing the simulation to crash. Admittedly, these are
well limitations of relying on the pseudo-inverse IK controller
to command the joint velocities, since it imposes no constraints
on those velocities and on the configuration space. In order to
incorporate such constraints, an optimization-based approach
to differential kinematics could be adopted. This generally
appears in the form of a quadratic program with a cost on
the square-error gripper spatial velocity and constraints on
the joint velocities and joint configurations. Another apparent
limitation is the system’s sensitivity to random noise. To an
extent, this was expected due to the single-procedure nature
of the system; it only computes the trajectory to the target
once at initialization. If this methodology was kept, then
applying filtering techniques on real-world sensor data (e.g.
depth camera, IR, etc.) such as Kalman filtering and sensor
fusion would an immediate help. Of course, even with the
noise the system could also be adapted to performance con-
stant kinematic trajectory optimizations after every N sensor
samples. Real-world systems continually receive and record
sensor measurements and are designed to be adaptive beyond
single-procedure methods like the one presented in this report.

V. CONCLUSION

Overall, the aim of this project was to design a system that
can plan and execute a grasp maneuver on a tumbling target
and to benchmark the robustness of this system against noisy
state estimates of the target. In my experiments I demonstrated
that my system is capable of achieving consistent capture
maneuvers when free of random noise in the target state, and
that it is capable of succeeding under noisy scenarios as well.
More importantly, my experiments revealed the limitations in
my system, which have provided me with several ideas for
improvements. In terms of possible extensions to this project,
I can identify multiple areas that could enhance the system’s
performance and compatibility to real-world scenarios. Some
of these I already mentioned, including applying filtering
techniques and implementing an optimization-based controller,
however even with these additions the system would continue
to be limited against real-world needs. In particular, there is
a need to determine the allowable friction coefficients for
the gripper fingers that can ensure that the captured target
remains in stationary grasp. Conducting this study would also
reveal the kinds of materials this robot would be capable of
grasping, which would then help us gauge its effectiveness
against real space debris. Regarding the workspace limit on
the iiwa arm, the only way to directly overcome the workspace

limitation would be either to use a different arm or to design
a tool for the iiwa arm to use as an extended gripper. I would
find it interesting to see how the iiwa could make use of a
diverse toolset that it can manipulate with its fingers to perform
captures on far away objects or perform other tasks.

REFERENCES

[1] E. Papadopoulos, F. Aghili, O. Ma, R. Lampariello, ”Robotic Manipu-
lation and Capture in Space: A Survey”, Frontiers in Robotics and AI,
2021, pp. 228, doi: 10.3389/frobt.2021.686723

[2] P. Piersigilli, I. Sharf, A.K. Misra, ”Reactionless capture of a satellite
by a two degree-of-freedom manipulator”, Acta Astronautica, 2010, pp.
183-192, doi: 10.1016/j.actaastro.2009.05.015

[3] H. Nagamatsu, T. Kubota and I. Nakatani, ”Capture strategy for retrieval
of a tumbling satellite by a space robotic manipulator,” Proceedings of
IEEE International Conference on Robotics and Automation, 1996, pp.
70-75 vol.1, doi: 10.1109/ROBOT.1996.503575.

[4] Russ Tedrake. Manipulation: Perception, Planning, and Control (Course
Notes for MIT 6.834). Downloaded on December 9, 2021 from
https://manipulation.csail.mit.edu/


	Introduction
	Related Work

	Approach to Performing a Grasp Maneuver
	Test Environment
	Differential Inverse Kinematics
	Planning the Gripper Trajectory
	Stationary Target
	Rotating Target
	Translating Target
	Tumbling Target


	Results
	Tumbling Target
	Noisy Initial Target Pose Estimate
	Noisy Target Angular Velocity
	Videos
	Code

	Discussion
	Conclusion
	References

